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Abstract Multilevel models can deal with nested structures in household panel data to
derive unbiased regression coefficients and standard errors for predictors from multiple
hierarchical levels, e.g., households, products, or stores. Within the framework of
multilevel modeling, researchers can apply purely nested models or cross-classified
random effects models (CCREM). This paper explains the partially cross-classified
structure in household panel data. Simulation study 1 demonstrates that standard errors
for level-two predictors are severely downward biased when applying a nested three-
level model to partially crossed data. Furthermore, the hierarchical location of interac-
tions between predictors associated with two crossed levels is explained. Simulation
study 2 demonstrates that with unbalanced real-world data, both standard errors and
regression coefficients for interaction-level predictors can be biased when the “artifi-
cial” random interaction level is omitted from a CCREM. The simulation studies are
followed by a discussion of implications for the application of multilevel models to
household panel data.

Keywords Multilevel modeling . Cross-classifiedmodel . Panel data . Simulation

1 Introduction

Hierarchical or multilevel modeling (Raudenbush and Bryk 2002; Snijders and Bosker
2012) comprises a group of methodologies suited for application to panel data owing to
the nested structure of such data (Steele 2008). In non-aggregated household panel
data, repeated observations are not only nested within households but also within
products and stores1. When researchers simultaneously investigate random samples
of two (or more) of these higher-order levels, either purely nested three- (or more) level
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models or cross-classified random effects models (CCREMs) can be applied within the
framework of multilevel modeling. Nested models are suitable when lower-level units
are nested within a single unit at the next higher level. In contrast, CCREM are special
multilevel models that are applied when lower-level units are simultaneously nested
within units from two or more higher-order levels, but these higher-order level units are
not nested within each other (Snijders and Bosker 2012). The structures of a purely
nested model compared with a CCREM applied to household panel data, including the
observation, household, and product levels, are illustrated in Fig. 1.

In general, multilevel models are specifically focused on splitting variance to the
modeled levels and drawing correct inferences for predictors associated with different
hierarchical levels (Rabe-Hesketh and Skrondal 2012). However, accounting for these
different hierarchical levels require correctly formulating a random part of a multilevel
model. Some previous studies have investigated the biasing effects when the random
parts of nested models (e.g., Moerbeek 2003, 2004) and CCREMs (Luo and Kwok
2009; Meyers and Beretvas 2006) are misspecified through the omission of one
hierarchical level (random factor). Most notably, these studies concluded that the
standard error of a predictor’s regression coefficient is underestimated when the
associated hierarchical level is omitted from the model’s random part. The standard
error bias increases with the variance associated with the ignored factor. For CCREM,
the bias decreases with increasing correlation between the residuals of the crossed
factors. Furthermore, the variances of ignored factors are redistributed to the adjacent
levels, while the redistribution depends on factors such as whether the data structure is
more crossed or more nested.

While these studies provide valuable insights into the consequences of
misspecifying a multilevel model’s random part, they ignore two important issues for
modeling household panel data. First, they focused on the omission of nested or crossed
factors, but ignored the possibility of formulating a nested three-level model when two
higher-order factors are partially cross-classified. Especially in household panel data,
the structure is neither fully crossed nor fully nested. Thus, it is attractive for researchers

P: product; HH: household; Obs: observation

Fig. 1 Comparison of model structures for a three-level model and a cross-classified model
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to apply the simpler nested model to data that lie between nesting and cross-classifi-
cation. Second, previous studies ignored cross-level interactions despite their being an
inherent part of multilevel modeling. Especially in marketing, many research questions
cannot be answered without interaction effects. Thus, it is important to extend existing
research by incorporating cross-level interactions. Beyond these limitations, it should
also be possible to draw more generalizable conclusions about the data structure and the
best performing multilevel model for household panel data. Since the data structures are
similar in most cases, and generally at least include household and product information,
it should be possible to provide practical guidance for researchers and managers
wishing to apply similar models to their data.

Motivated by the described limitations, section 2 of this manuscript aims to clarify
the data structure of household panel data from a hierarchical perspective. The associ-
ated simulation study in section 2.2 demonstrates standard error bias when nested
models are mistakenly applied to partially crossed data. Next, section 3 describes the
cross-level interactions between predictors from higher-order levels in CCREMs and
the simulation study 2 in section 3.1 aims to highlight the biases of regression
coefficients and standard errors for these cross-level interactions within an unbalanced
real-world data structure. Finally, section 4 provides a general discussion of the major
findings as well as implications for researchers and managers.

2 The data structure in the household panel data

2.1 Nesting or cross-classification

If interest is limited to predictors from only one higher-order level, for example the
household level, a two-level hierarchical linear model (HLM) can be applied to house-
hold panel data in which observations are nested within households. However, if
predictors from two higher-order levels are included, a nested three-level model or
CCREM can be formulated. In the case of nesting, the assumption is that every
observation at level one is associated with exactly one unit at level two, and each
level-two unit in turn is nested within a unit at level three (Raudenbush and Bryk 2002).
Such a model for household panel data was proposed by Gielens and Steenkamp (2007),
who modeled households at level two and products at level three (see Fig. 1a). However,
this model assumes that each household at level two is nested within exactly one product
at level three, which equals the assumption that each household is loyal to a single
product that they always choose. However, especially for consumer packaged goods
(CPGs), this seems extremely unrealistic since even loyal or habitual consumers are
forced to select alternatives from time to time. Theoretically, every household has the
chance to buy any product, or alternatively, every product has the chance to attract
customers from any household, meaning the data structure could be fully crossed. Since
the real data structure lies between these two extremes of pure nesting and full cross-
classification, the underlying data structure can be described as partially cross-classified
and thus should bemodeled as a CCREM inwhich a single observation is described by a
household-product combination (see Fig. 1b).

The choice of a CCREM for this kind of data is essential because in a three-level
model, the number of independent observations for an intermediate-level predictor (i.e.,
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household-level predictors in the Gielens and Steenkamp model) is assumed to be too
large. For example, if each household buys two different products, a three-level model
would double the assumed household sample size when modeling households at the
intermediate level (see household 2 in Fig. 1a). Consequently, the standard errors for
household-level predictors are likely to be downward biased. Meanwhile, if each
product is bought by two households and products are modeled at the intermediate
level, standard errors for product-level predictors would be downward biased because
the product sample size is assumed to be twice the true sample size. Thus with a three-
level HLM, incorrect assumptions concerning the level-two sample sizes make it
impossible to be sure that standard errors for level-two predictors are unbiased. In
contrast, by applying a CCREM, predictors associated with both the household and
product levels coexist at level two. Consequently, a CCREM should reveal unbiased
standard errors for household- and product-level predictors since its assumptions do not
result in overstated sample sizes for both levels. In summary, when analyzing non-
aggregated panel data, higher-order levels (households, products, and stores) are
partially cross-classified rather than purely nested. Thus, a CCREM is the correct
choice when dealing with predictors of two or more higher-order levels.

2.2 Study 1

2.2.1 Description

This simulation study aims to demonstrate standard error biases when applying two-
and three-level HLMs to balanced and partially cross-classified data. Results of a
correct CCREM and three misspecified nested models are compared in terms of the
biases of regression coefficients, standard errors, and variance components. First, a
two-level HLM is estimated, in which the product level is omitted. Results for this
model are expected to resemble those of previous studies that tested the effects of
omitting a level of nesting (Moerbeek 2004) or a crossed factor (Luo and Kwok 2009)
in multilevel models. Those studies found regression coefficients to be unaffected
within a balanced data structure, but that the standard errors for predictors at the
omitted levels and random effects were biased.

Second, two three-level models are formulated, in which either the household or
product levels are modeled as nested within the other partially crossed factor. Both
models consider all relevant hierarchical levels, but we expect standard errors of level-
two predictors to be downward biased because level-two sample sizes are overstated as
a result of incorrect assumptions. To test different levels of nesting versus cross-
classification, these models are applied to household purchase data, where each
household bought four different products, while each product was bought by eight
different households. Thus, households are more nested in products than vice versa. We
expect the standard error bias to be larger if products are modeled at level two because
the product sample size is overstated by a factor of eight, while the household sample
size is only overstated by a factor of four in the other model with households nested in
products. However, compared with the two-level HLM, in which the product level is
omitted, biases are expected to be lower since level-two predictors are not assumed to
vary at the lowest level, meaning overstating the product sample size should have less
dramatic effects in the three-level than the two-level model.
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2.2.2 Data generation and analysis

The CCREM and the three HLMs were applied to a simulated household panel data set
including 500 households and 250 products. As described, for the various possible
household-product combinations, each household was assumed to buy only four
products and each product was assumed to be bought by eight households. The data
structure was partially cross-classified, with 98.4 % of cells being empty. Each
household-product combination appeared five times in the data set, resulting in
10,000 observations in total. The data-generating model included the level-one predic-
tor Time, a product-level predictor, and a household-level predictor. The level-one
model is as follows:

Y tij ¼ β0ij þ β1 � Timetij þ etij

The variation of the random intercept was captured by a level-two model, which
appears as follows:

β0ij ¼ γ0 þ γ1 �Wi þ γ2 � Z j þ b00i þ c00 j;

where t denotes time, i denotes households, and j denotes products. Wi and Zj are
predictors at the household and product levels, respectively. The conditional random
effects for the observation, household, and product levels, etij, b00i, and c00j, respec-
tively, were drawn from a multivariate normal distribution and had means of zero and
variances of σe

2, σb
2, and σc

2. The correlations between these random effects were set to
zero. The simulated population effects for generating the outcome variable Ytij are
reported in Table 1. The population effects for the household- and product-level
predictors were set to the same value, as were the household- and product-level
variances, to ensure possible parameter biases are due to overstated sample sizes rather
than differences in these simulated population effects. Relative biases for the regression

coefficients B γbð Þ , variance components B σbð Þ , and standard errors BðbS
b
γ Þ were

calculated as follows:

B γbð Þ ¼ γb−γpopul
γpopul

;B bσ2
� �

¼
bσ2−σ2

popul

σ2
popul

;BðbS
b
γ Þ ¼

bS
b
γ−Semp
Semp

These formulas indicate that estimates for the regression coefficients and variances
were compared with the simulated population effects, while standard errors were
compared with the empirical standard errors, which were calculated as the standard
deviations of standard error estimates over the 1,000 model runs.

Data generation was conducted with Stata 132. The models were formulated with
runmlwin (Leckie and Charlton 2013). Thus, all the models were estimated using the
multilevel modeling software MLwiN (Rasbash et al. 2013) by applying its Markov
Chain Monte Carlo (MCMC) functionality3.

2 The Stata do-file is available from the authors on request.
3 The MCMC approach within MLwiN was used because of the ease of incorporating (multiple) cross-
classifications, rather than based on an ideological preference for Bayesian over frequentist approaches.
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2.2.3 Results and discussion

The results of the CCREM and the three different nested models are reported in Table 1.
Within the balanced partially cross-classified data structure used in this study, fixed
effects regression coefficients were not affected by the model type (−.02<B<.01). The
standard errors for the level-one predictor Time were also unaffected for the CCREM
and the three-level HLMs (−.01<B<.02). For the two-level HLM, the standard error for
Time was upward biased (B=.19) while that for the product-level predictor was
downward biased (B=−.74) because it omitted the product level. Based on a cut-off
value of .10 for acceptable standard error biases (Hoogland and Boomsma 1998), these
biases were unacceptably high for both standard errors. The product-level variance was
also redistributed to both level one and the remaining crossed household level. These
findings for the two-level HLM confirm the results of previous studies (e.g., Luo and
Kwok 2009) when a crossed factor is omitted from the model.

The application of three-level HLMs to cross-classified data also led to biased
standard errors for level-two predictors. The bias appeared larger when products were
modeled as nested in households (B=−.58) than when households were nested in
products (B=−.44). These results indicate that the real underlying data structure was
better reproduced in the latter case because of the higher nesting of households in
products than vice versa, as described in Section 2.2.2. Overstating level-two sample
sizes thus became less problematic with more nesting. However, the standard error bias
far exceeded the acceptable range even for the better model. This result implies that
three-level models cannot account for the underlying partially crossed data structure,
though they outperformed a two-level HLM.

The results of this study confirm that only a CCREM can assume correct sample
sizes for the partially crossed level-two factors, households and products. Omitting one
of these factors or modeling the structure as purely nested leads to incorrect conclusions

Table1 Results for study 1

Simulated
population
effect

CCREM 2-level HLM
omission of
product level

3-level HLM
households nested
in products

3-level HLM
products nested
in households

Sample sizes

Households 500 500 2000 500

Products 250 10,000 250 2000

Fixed effects γpopul bγ (bS
bγ
) bγ (bS

bγ
) bγ (bS

bγ
) bγ (bS

bγ
)

Time .2 .20 (.016) .20 (.019) .20 (.016) .20 (.016)

Household-level predictor .4 .39 (.057) .40 (.062) .40 (.033) .40 (.061)

Product-level predictor .4 .40 (.079) .40 (.022) .40 (.081) .40 (.034)

Random effects σpopul
2

bσ2 bS
bσ2

� �

bσ2 bS
bσ2

� �

bσ2 bS
bσ2

� �

bσ2 bS
bσ2

� �

Level-one residual variance 5.0 5.00 (.072) 7.35 (.107) 5.00 (.079) 5.00 (.078)

Household-level variance 3.0 3.01 (.210) 3.62 (.248) 2.99 (.137) 3.00 (.261)

Product-level variance 3.0 3.02 (.295) 3.02 (.321) 2.98 (.145)

Note: numbers in italics indicate unacceptable parameter bias
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for predictors associated with the omitted factor or level-two factor, respectively.
Generally, it can be concluded that the data structure in household panel data is not
purely nested because households will not purchase just one product over time and
products will not attract just one customer. Thus, a CCREM seems to be the most
appropriate modeling option.

3 Modeling cross-level interactions in CCREM

While in study 1, we clarified the structure of household panel data and identified a
CCREM as the best performing model, this section examines the consequences of these
findings for modeling cross-level interactions between predictors associated with two
crossed factors. Cross-level interactions originate from interactions between predictors
associated with two different hierarchical levels. These interactions are modeled when
researchers expect the effect of a lower-level predictor to be contingent on a higher-level
predictor (Aguinis et al. 2013). From a hierarchical perspective, such interactions vary at
the lower of the two respective levels and thus can be seen as lower-level predictors.
Consequently, when purely nested models are applied, it is sufficient to model the lower-
level random factor to derive unbiased standard errors for cross-level interactions.
However, unlike for nested models, no lower-level factor exists when interactions are
formed by predictors associated with two crossed factors in a CCREM, for example when
household-product interactions, household-store interactions, or product-store interac-
tions are formed. In a CCREM, such interactions vary between the crossed factors at an
“artificial” level. For this level, it is possible to estimate a so-called random interaction
effect. Raudenbush and Bryk (2002, p. 378) stated that such random interaction effects
were omitted in most CCREMs because within-cell sample sizes were insufficient for
reliable estimations of the associated variance component. However, to date, it is unclear
whether it is better to incorporate or omit the interaction level to derive (more) reliable
regression coefficients and associated standard errors for cross-level interactions.

We argue that without modeling the random interaction effect, interaction-level
predictors in CCREM are assumed to vary at level one. As for omitting one of the
main crossed factors, not modeling the random interaction effect overstates the
interaction-level sample sizes and thus causes downward-biased standard errors for
interaction-level predictors. Additionally, regression coefficients for interaction-level
predictors may be biased because real-world household panel data are likely to be
unbalanced (Baltagi 2013). Such unbalance means some households, products, and
stores appear more often in the data than others. To summarize, the omission of the
random interaction effect could result in bias of both standard errors and regression
coefficients for the interaction-level predictor.

3.1 Study 2

3.1.1 Description

This study aims to demonstrate that within a real-world data structure, regression
coefficients and standard errors for interaction-level predictors formed by predictors
from two crossed levels are biased when the associated random interaction effect is not
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incorporated into the model. To this end, we employ household panel data on yoghurt
purchases from Germany for 2008. Such real-world data have the advantage that the
degrees of unbalance and cross-classification do not have to be created by an artificial
process. Compared to real-world data, the advantage of simulated data is that popula-
tion effects are known and thus biases of estimated parameters can be evaluated. In
order to combine these two advantages, the population effects are simulated within the
given real-world data structure.

In this study, we are interested in a level-one, household-level, store-level, and
household-store interaction-level predictor. Similar to the household-product relation-
ship illustrated in Fig. 1b, households and stores are also cross-classified because each
household can theoretically shop in any store and each store can attract any household.

We apply three different CCREMs with different random parts. While the first
model incorporates all random factors, the second model does not estimate the
product-level variance. Since we are not interested in an associated product-level
predictor, we expect the fixed part of the model to be unaffected by this restriction
and the interaction-level predictor to be unbiased because the model includes the
random interaction level. The third model omits the household-store interaction level.
Consequently, we expect the regression coefficient and the standard error of the
interaction-level predictor to be biased.

3.1.2 Descriptive statistics, data generation, and analysis

The household panel data used in this study included 154,237 purchases of 1876
different yoghurt products. These purchases were made by 2996 households in 30
different stores. Since we focused on the household-store interaction-level predictor, we
were mainly interested in the degree of crossing and unbalance of households and
stores. The household-store interaction level involved 11,922 units. Thus, more than
86 % of cells were empty, indicating partial cross-classification. The average household
bought yoghurt in 3.98 different stores, with 8.78 % of households shopping in only
one store and less than 5 % shopping in more than seven stores. Meanwhile, the
average store attracted 394.4 households, with 36.67 % attracting less than 100
households and 10 % attracting more than 1000 households. In terms of unbalance,
the average number of household-store interaction observations was 12.9. The structure
thus was clearly unbalanced, with 32.23 % of interaction units having cell sizes of one
or two, and only 4.81 % having cell sizes of more than 50.

Within the given data structure, population effects were simulated (see Table 2). The
level-one and level-two models appear as follows:

Y tijk ¼ β0ijk þ β1 � Timetijk þ etijk
β0ijk ¼ γ0 þ γ1 �Wi þ γ2 � Vk þ γ3 �Wi � Vk þ b00i þ c00 j þ d00k þ r0ik

The additional index k denotes the store level. Vk is the store-level predictor andWi*
Vk is the interaction between the household- and store-level predictors. The simulated
variances σe

2, σb
2, σc

2, σd
2, and σr

2 are located at the observation, household, product,
store, and household-store interaction levels, respectively. As in study 1, random effects
were drawn from a multivariate normal distribution and were not correlated.
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3.1.3 Results and discussion

Table 2 presents the results of the three different CCREMs applied in simulation study
2. The standard error bias for the level-one, household- and store-level predictors did
not exceed the acceptable range in the three models (-.05<B<.05). Thus, the different
formulations of the random part did not significantly affect these parameters. For the
interaction-level predictor, the standard error biases were acceptable in the full model
(B=.01) and the restricted model (B=.02), both of which included the random interac-
tion effect. However, the standard error was unacceptably downward biased in the
model without the random interaction effect (B=−.69). As for omission of one of the
main random factors, the omission of the interaction-level predictor’s hierarchical level
thus led to overstatement of the interaction-level sample size.

Besides the standard error bias, we also expected the regression coefficient for the
interaction-level predictor to be biased in the misspecified model because of the
unbalance in the data. This bias in the misspecified model cannot be evaluated using
the coefficient reported in Table 2 because the bias appears in single model runs and
can add up to zero over the 1000 model runs in this study. Therefore, we compared the
correlations of the regression coefficients for the interaction-level predictor in the three
models and found a high correlation of .92 between the full and restricted models, but
smaller correlations of .65 between the full and misspecified models and .62 between
the restricted and the misspecified models. The difference between .92 and .65 (.61)

Table 2 Results for study 2

Simulated
population
effects

Full model Restricted model
without product
level variance

Misspecified model
without random
interaction effect

Sample sizes

Households 2996 2996 2996

Products 1876 154,237 1876

Stores 30 30 30

Household-store interactions 11,922 11,922 154,237

Fixed effects γpopul bγ (bS
bγ
) bγ (bS

bγ
) bγ (bS

bγ
)

Time .2 .20 (.001) .20 (.001) .20 (.001)

Household-level predictor .4 .40 (.027) .40 (.029) .40 (.029)

Store-level predictor .3 .41 (.188) .39 (.194) .39 (.197)

Household-store interaction level
predictor

.3 .30 (.011) .30 (.013) .30 (.005)

Random effects σpopul
2

bσ2 bS
bσ2

� �

bσ2 bS
bσ2

� �

bσ2 bS
bσ2

� �

Level-one residual variance 5.0 5.00 (.001) 7.32 (.001) 6.78 (.001)

Household-level variance 4.0 3.00 (.119) 3.10 (.129) 5.20 (.141)

Product-level variance 3.0 3.00 (.115) 3.14 (.122)

Store-level variance 2.0 2.10 (.616) 2.18 (.637) 2.28 (.668)

Household-store interaction variance 4.0 4.00 (.080) 4.53 (.095)

Note: numbers in italics indicate unacceptable parameter bias
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was significant at the p<.01 level. This result confirmed our expectation that the
omission of the random interaction level resulted in biased regression coefficients for
the interaction-level predictor given unbalanced data.

Regarding the random effects of the three models, we found that only in the full
model were the variances correctly apportioned to the different levels (B<.05), while
for the restricted and misspecified models, the variances of the omitted levels were
redistributed to the adjacent levels. However, in the restricted model, the redistribution
did not affect the fixed part of the model, which suggests the product level can be
omitted for reasons of parsimony, given that the interest is not in a product-level
predictor and/or specifically in the random model part. This is consistent with the
conclusion of Meyers and Beretvas (2006) that it is unnecessary to model cross-
classifications if researchers are not interested in predictors from all cross-classified
factors.

4 General discussion and conclusions

The first purpose of this study has been to clarify the data structure in non-aggregated
household panel data and the consequences for modeling when researchers simulta-
neously incorporate predictors from two or more higher-order levels, for example the
household, product, and store levels. For (most) household panel data, the structure is
not purely nested, with households nested in products or vice versa, but rather is
partially crossed. Study 1 demonstrated that a CCREM performs best for this kind of
data, even when the number of empty cells is substantial and the use of a nested model
for simplicity appears attractive. Even though a nested three-level model performs
better than a two-level model, the results of study 1 clearly indicate that even three-level
models overstate intermediate-level sample sizes, leading to downward-biased standard
errors for intermediate-level predictors. Thus, researchers should prefer a CCREM to
ensure that correct sample sizes for both crossed levels are assumed.

The consequences of applying CCREMs to model cross-level interactions between
predictors from two crossed levels were demonstrated in study 2. In a CCREM, such
interactions are located at a separate level between the two crossed main levels. Results
of study 2 show that this random interaction level must be modeled to derive unbiased
standard errors for interaction-level predictors. Otherwise, the interaction-level predic-
tors are assumed to vary at the lowest hierarchical level which leads to overstated
interaction-level sample sizes. Thus, the consequences of ignoring the random interac-
tion level are similar to those of omitting a main crossed factor.

Study 2 further demonstrated that not only can standard errors be biased, but
regression coefficients for predictors associated with an omitted crossed factor can also
be incorrect when employing unbalanced real-world data. Although Luo and Kwok
(2009) noted that the mechanisms underlying biased regression coefficients within
unbalanced data remain unclear, there are reasons to expect that regression coefficients
are biased toward units that appear more often in the data. Such units are incorrectly
assumed to be independent and thus are likely to more strongly influence regression
coefficients. Generally, biased regression coefficients are particularly problematic when
the focus of a study is less on hypothesis testing than accurate prediction of an outcome
variable. For example, an incorrect interaction effect between “average store shelf

256 Mark Lett (2016) 27:247–257



www.manaraa.com

price” and “household income” that affects purchase quantities could lead to incorrect
conclusions regarding the optimal composition of high- and low-priced products in a
store since the true interaction effect could differ in magnitude from that estimated in
the misspecified model. Interactions between household- and product-level predictors
as well as direct effects are also at risk of being misinterpreted if their associated levels
are omitted and regression coefficients are biased. For example, managers targeting a
certain trial rate for their new products may allocate too much or too little to the
advertising budget of a new product when the direct effect of “advertising intensity”
and/or its interactions with household-level predictors are biased. Thus, misspecifying
the random part of a CCREM can ultimately cause economic losses for a company.
Researchers thus must carefully consider the hierarchical location of every model
variable and include the associated random factor in the random part of a multilevel
model.
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